
Week 11 – Wednesday

 What did we talk about last time?
 Semaphores
 Signaling
 Mutual exclusion
 Multiplexing

 Sometimes a bunch of threads are working on a task that has
phases

 We want to guarantee that all threads have finished Phase 1
before moving on to Phase 2

 To guarantee this, we can use barriers
 A barrier prevents threads from continuing unless k threads have

reached it
 It's common for k to be the total number of threads
 Sometimes, however, the calculation is fine as long as at least k are done

 It's possible to do this kind of coordination with semaphores, but
it's hard to get it exactly right

 Self-driving cars solve a very difficult problem
 Adjustments have to be made based on sensor data like cameras and GPS
 Planning has to be done based on internally stored map data
 Marrying together the planning with ever-changing data is something that

computers are not very good at
 We might need data from several different threads to be gathered

before we're ready to do the next phase of planning
 A barrier might be the right tool to make sure that enough threads

are ready
 The barrier might not even require all the threads, since it might

be better to make decisions now based on sensor data from 5 out
of 7 sensors than to wait

 Create a barrier with the attributes given (often NULL) and the count
of threads blocked

 Free up the resources associated with a barrier

 Wait on a barrier until enough threads reach it

int pthread_barrier_init (pthread_barrier_t *barrier, const
pthread_barrierattr_t *attr, unsigned count);

int pthread_barrier_destroy (pthread_barrier_t *barrier);

int pthread_barrier_wait (pthread_barrier_t *barrier);

 We can imagine a threaded merge sort that works in this way:
 Each thread is assigned a section of the array to sort
 Each thread uses merge sort to sort that part of the array
 All threads wait on a barrier

 Then
 Even numbered threads merge together their section with the

neighboring section
 Threads that are multiples of four merge together double sections with

other double sections
 Threads that are multiples of eight merge together quadruple sections

with other quadruple sections
 …

 Each thread is assigned a section of an array and sorts it

 Since there's no overlap, each thread can work independently
 After sorting, all threads wait on a barrier to be sure that every

thread has finished sorting

Values

Threads 0 1 2 3 4 5 6 7

 Threads can't merge the same parts of the array without causing race conditions
 Half the threads merge with their neighbors

 Then, half of those merge

 And so on, until it's all merged

Values

Threads 0 2 4 6

Values

Threads 0 4

Values

Threads 0

 Here are some defined constants and the input structure the threads will use to do the
merge sort

 Note that the number of threads evenly divides the array length and is a power of 2, to
keep everything simple

#define THREADS 8
#define SIZE (1024*1024)

struct args {
pthread_barrier_t *barrier;
int id;
int *array;
int *scratch;
int length;
int threads;

};

 Here's the main() for the threaded merge sort
int main() {

pthread_t threads[THREADS];
struct args args[THREADS];
int* array = malloc(sizeof(int) * SIZE); // Create array
int* scratch = malloc(sizeof(int) * SIZE); // Merge sort needs a scratch array
srand(time(NULL));
for (int i = 0; i < SIZE; ++i)
array[i] = rand();

pthread_barrier_t barrier;
pthread_barrier_init (&barrier, NULL, THREADS); // Create barrier

for (int i = 0; i < THREADS; ++i) {
args[i].id = i;
args[i].barrier = &barrier;
args[i].array = array;
args[i].scratch = scratch;
args[i].length = SIZE;
args[i].threads = THREADS;
pthread_create (&threads[i], NULL, sorting, &args[i]);

}

for (int i = 0; i < THREADS; ++i)
pthread_join (threads[i], NULL);

pthread_barrier_destroy (&barrier);
free (array);
free (scratch);
pthread_exit (NULL);

}

 The thread itself is more complex than what we've done before
void * sorting(void *args) {
struct args* input = (struct args*)args;
int stride = input->length / input->threads;
int start = stride * input->id;
int end = start + stride;
merge_sort (start, end, input->array, input->scratch);
pthread_barrier_wait (input->barrier); // Wait for threads to finish sorting

int multiple = 2;
while (multiple <= input->threads) { // Threaded merge
if (input->id % multiple == 0) {
int aStart = start;
int aEnd = aStart + (stride * multiple / 2);
int bStart = aEnd;
int bEnd = bStart + (stride * multiple / 2);
merge (aStart, aEnd, bStart, bEnd, input->array, input->scratch);

}

pthread_barrier_wait (input->barrier);
multiple *= 2;

}

pthread_exit (NULL);
}

 Although the threading part is done, we can still do the other two
methods

 Recursively merge sorts the contents of array from start up to (but not
including) end, using scratch as extra space

 Merges sorted values from aStart up to (but not including) aEndwith sorted
values from bStart up to bEnd, using scratch as extra space

 Note that the range from aStart up to bEnd is expected to be contiguous

void merge_sort (int start, int end, int array[],
int scratch[])

void merge (int aStart, int aEnd, int bStart, int bEnd,
int array[], int scratch[])

 Condition variables
 Deadlock
 Synchronization design patterns

 Work on Project 3
 Read sections 7.6, 7.7, 8.1, and 8.2

	COMP 3400
	Last time
	Questions?
	Project 3
	Barriers
	Barriers
	Barrier example
	Barrier functions
	Merge sort
	Threaded merge sort visualized
	Final merging visualized
	Threaded merge sort in code
	Threaded merge sort in code
	Threaded merge sort in code
	Programming practice
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

